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Abstract-Mixed convection about a sphere buried in a porous medium saturated with water is numerically 
investigated using a Chebyshev-Legendre spectral method. Both Darcy’s law and the Boussinesq approxi- 
mation together with effects due to nonlinear dependence of density on temperature are used to formulate 
the governing equations. Two types of surface condition are considered including variable surface tem- 
perature and surface heat flux which are modeled by Legendre expansions. Calculated results for the 
nonuniform heating and the nonuniform surface temperature cases demonstrate that the flow structures 
are not much different from the non-porous medium except for the recirculation zones which appear when 
the direction of the free stream velocity is opposite to the direction of the buoyancy force. Effects of 
nonuniform surface temperature are seen to dictate the heat flux distribution along the sphere surface and 

vice versa. 

1. INTRODUCTION 

TRANSFER processes involving porcus materials occur 
in almost all engineering disciplines. Tien and Vafai 
[l] cited a number of specific examples ranging from 
natural processes to those of technological import- 
ance. Perhaps, one of the areas which has become the 
center of attention in recent years has been ground- 
water contamination in that pollutants enter the 
groundwater aquifer from the point of release by vari- 
ous mechanisms. Among the multitude of the under- 
lying chemical and physical phenomena involved, 
advection is known to play a major role in con- 
taminant transport and in some circumstances it is 
further augmented by buoyancy-induced convection. 
Such scenarios are typical in near-field modeling 
associated with hazardous waste repositories where 
the transport processes may be affected by the lib- 
eration of heat due to exothermic reactions of the 
emplaced wastes. 

Over the years, studies of flow and transport associ- 
ated with a body embedded in fluid-saturated porous 
media have concentrated on spheres, cylinders, and 
the like. Although geometrically simple, these con- 
figurations play an important role in practice and 
more importantly, they are instructional tools to 
deepen our understanding of the transport mech- 
anisms which could be generalized to complex geo- 
metries. Of particular interest in this article is the 
sphere which seems, at least in certain aspects, to be 
somewhat lagging behind its cylindrical counterpart 
as far as theoretical development is concerned. Three 

types of solution have been reported for the natural 
convection problem about a sphere embedded within 
a saturated porous medium. At low and high Rayleigh 
numbers, the solutions have been obtained by regular 
perturbation method and boundary-layer analysis, 
respectively. For a more thorough review, readers are 
recommended to consult authorative books by Ene 
and Polisevski [2] and Nield and Bejan [3]. At inter- 
mediate Rayleigh numbers, available solutions were 
those of Pop and Ingham [4] who obtained the results 
via computer simulations based on a finite differencing 
scheme. 

All of the accounts mentioned thus far assumed 
that the flow is driven by the buoyancy force which is 
a consequence of the density change. However, there 
exists a more general situation at which the thermally- 
induced flow field is superimposed on an external 
motion of the same order of magnitude ; thereby ne- 
glecting one over the other would lead to erroneous 
results. Minkowycz et al. [5] and Cheng [6] have inves- 
tigated this mixed convection problem on the basis 
of boundary layer approximations. Though useful in 
their own right, the boundary layer solutions have 
limited usefulness because they are only valid as long 
as thin boundary layers exist along the surface of the 
sphere. Because the boundary layer thickness grows 
as the inverse of the square root of the Rayleigh 
number, it becomes clear that the validity of these 
solutions does not extend to the cases when Rayleigh 
numbers are small. To the authors’ knowledge, this 
situation has not been investigated. 

Motivated by the lack of solutions to such an impor- 
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NOMENCLATURE 

; 
specific heat 
buoyancy parameter 

e unit vector associated with spherical 
coordinates 

9 gravity constant 
c”i!] (?i2) > > Chebyshev matrix for first and 

second derivative respectively 

&k see equation (20) 
K permeability 
NL number of terms retained in the 

Legendre expansion 
NT number of collocation points less 

one 
NU mean Nusselt number 

P fluid pressure 

p,, Legendre polynomiaf of order n 
pi, associated Legendre function 
Pe Peclet number 

4 surface heat flux 

Q average surface heat flux 
P radial coordinate 
R sphere radius 
Ra Rayleigh number 
s ,Ik see equation ( 19) 
t time 

Ti Chebyshev polynomial of order 
i 

u velocity vector 
Z dimensionless temperature 

z, expansion coefficient for temperature. 

Greek symbols 
3: thermal diffusivity 
Xii see equation (22a) 

Pl’ isothermal expansion coefficient 
I, ‘I i 1, see equation (22d) 

4 Kronecker delta 
t) angular coordinate 
li effective thermal conductivity 
i. :; see equation (22~) 

p viscosity 

P cos N 
ir coordinate transformation, see 

equation (15b) 

P density 

dl porosity 
@ see equation (7) 

$ 

dimensionless stream function 

,ik expansion coefficient for stream 
function 

&, see equation (22b). 

Superscript 
n1 time level. 

Subscripts 
f pertains to fluid property 

P pertains to solid matrix 
r pertains to radial direction 
S pertains to sphere surface 
f? pertains to angular direction 
CT: pertains to free stream condition. 

tant problem, the present study is carried out to inves- 
tigate the transient nature of the transport phenomena 
under conditions where boundary layer theory fails to 
capture the correct physics of the combined con- 
vection associated with a sphere embedded in fluid- 
saturated porous media. In a parallel effort, the pres- 
ent study also takes into account the effects due to 
density inversion of the working fluid. This charac- 
teristic is known to exist in water, especially near the 
freezing point. 

2. FORMUlATiON 

in the proximity of the hot sphere become warmer, 
causing a density variation which subsequently gen- 
erates a motion in the direction opposite to gravity. 
This gravity-induced flow when superimposed on the 
pre-existing motion would modify the flow field and 
hence the temperature field. Depending on the direc- 
tion of the free stream velocity and buoyancy, this 
forcing mechanism could aid or oppose the main flow 
and could produce dominant effects on heat transfer. 

In view of the complexities in the present inves- 
tigation, we shall formulate the problem with the fol- 
lowing assumptions: (i) the porous medium is rigid 

The scenario considered consists of a solid sphere of t 
radius R embedded in an unbounded porous medium 
characterized by a porosity Q, and a permeability K +a 
(Fig. 1). Initially, the sphere is at the same temperature +* 
as the ambience where a pre-existing flow of velocity 
U, is experienced. Suddenly, the sphere acquires a 

ti 

2 

higher temperature ; thus creating a heat flow from U, - 8 
the particle to the surrounding porous medium in 
accordance with the second law of thermodynamics. -_-- I- 

As a result of the absorption of energy, fluid particles FIG. 1. Schematic of the physical system. 
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and nondeformable with uniform hydraulic proper- 
ties, (ii) the fluid is Newtonian with constant proper- 
ties except density which varies as a direct conse- 
quence of change in temperature, (iii) the transport 
processes are axisymmetric with the flow obeying 
Darcy’s law, (iv) the Boussinesq approxima~on is 
valid with a parabolic density-temperaure relation- 
ship, and (v) the solid matrix and the fluid are in local 
thermodynamic equilibrium which is justifiable in 
view of the large surface area available for heat trans- 
fer. 

2.2. Governing equations 

As usual, the heat transfer process associated with 
the sphere is governed by the conservation of mass, 
momentum, and energy. Under the assumptions 
stated above, these laws, when applied to a differential 
control volume, result in the following equations 
expressed in vector notation as 

v.u=o, (1) 

MtPc)f+u +8mc),l; +tPC)fU'VZ = v* WZ), 

(2) 

u = - ~{vP+Pga(%--z~)‘~, (3) 

in which equation (3) reflects the use of the Boussinesq 
approximations which assume constant density every- 
where except in the gravity term where the density- 
temperature relationship has been modeled by a quad- 
ratic formula [7, 81. In the above equations, c is the 
sensible heat, g is the gravity vector, K is the per- 
meability,p is the pressure, t is the time, u is the Darcy 
velocity vector, Z is the temperature, @ is the thermal 
expansion coefficient, K is the effective thermal con- 
ductivity, g is the dynamic viscosity, p is the density, 
and 4 is the porosity. Regarding the effective con- 
ductivity of the porous medium, several analytical as 
well as empirical models have been proposed, but the 
weighted geometric mean has been recommended for 
practical purposes [3]. 

For the problem under consideration, it is more 
convenient to recast equations (l)-(3) in term of the 
stream function which is related to the velocity by 

e, ay ee ay ~~~~~-~~ 
r2 sin@ a@ rsin0 ar ’ (4) 

thereby resulting in 

@az l av, Z) 
at 

-----=~[-L~(r2!F) 
r2 sin 0 a(6 0) 

1 
+ a sineg -- 

r2 sin 0 a0 ( >I ae 3 (6) 

where we have employed 8(,)/a(,) to denote the 
Jacobian. In these equations, al1 the variables have 
been made dimensionless by introducing the following 
nondimensional quantities : 

for the nonuniform surface temperature case. These 
definitions are also extended to the variable surface 
heat flux case with the exception of Z’ and B which 
now take the forms 

Note that a prime has been used to indicate dimen- 
sionless variables ; however, it has been dropped in 
equations (5) and (6) for convenience. These equa- 
tions are subjected to the following boundary 
conditions. 

I. Axisymmetry : at the axis of symmetry, the 
mathematical constraints are 

II. 

III. 

f 

UT (t, I, 0) = Y (t, r, z) = 0, (8) 

Z(t, r, 0) = Z(t, r, n) = 0. (9) 

Far-field: the stream function and tempera- 
ture approach the free-stream 
asymptotic manner, i.e. 

values in an 

Sphere surface : the necessary 

(10) 

(11) 

requirements 
include no-slip condition and the continuity ot 
temperature/heat flux. These lead to the fol- 
lowing constraints : 

Y(t, l,@) = 0, (12) 

m 

for nonunifo~ surface temperature 

- Z(f I,$) = f a*P,(cos6) 
(13a, b) 

“=O 

I for nonuniform heating 
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where we have expanded the nonuniform surface 
quantities (13a, b) in the form of the Legendre series. 
From the numerical standpoint, several types of 
interpolation functions are possible for representing 
the surface temperature/heat flux; however, the 
Legendre functions are selected in order to be consis- 
tent with the temperature expansion to be proposed 
in the next section. 

To complete the problem specification, the initial 
conditions are prescribed such that the fluid is motion- 
less and the sphere is at the ambient temperature. 
These are 

Y (0, I’, 4) = 0, Z(0, r, fl) = 0. (14) 

In what follows, a hybrid numerical method that 
combines various approaches of weighted residual 
principles is described for transforming the governing 
differential equations to an algebraic system. From 
this, a computer code is developed for performing 
parametric studies to uncover the nature of mixed 
convection in porous media. 

3. METHOD OF SOLUTION 

As pointed out by Pop and Ingham [4] in their 
study of natural convection about a sphere embedded 
in a saturated porous medium, the unboundedness of 
the flow domain and the far-field boundary condition 
for the stream function necessitate special attention 
and must be resolved before numerical computations 
can proceed. While the former can easily be eliminated 
by a domain truncation or a coordinate trans- 
formation, the latter can be alleviated by working 
with a pseudo-stream function to be defined shortly. 
Considering these potential difficulties, we adopt the 
following change of variables : 

+;, p=coso, < = 1-t (15a,b,c) 

so that the deployment of the mapping (15~) allows 
the grid points to be accumulated near the sphere 
surface. Such a gridding is very preferable for resolv- 
ing stiff gradients which are expected to exist as con- 
vection becomes dominant. 

Following an earlier work on spectral methods [9], 
the dependent variables I/J and Z are expanded as 

series of products of Legendre, P,,(p), and Chebyshev. 
Tk(<), polynomials, i.e. 

(P) d/z (16a) 

/ (16b) 

in which qnks and x?,,~s are the spectral coefficients of 
the corresponding dependent variable being expanded 
and are functions of time only. 

By substituting equations (16a, b) into equations 
(5) and (6). then making use of the orthogonal 

properties and recursive formulas of Legendre func- 
tions, the equations become free of angular depen- 
dence. Next, the weighted residual principles can be 
applied to further simplify the resulting equations via 
forcing them to be error-free at the Gauss-Lobatto 
points. herein referred to as the collocation points. 

Thus, 

-- (!I + 2) (n - 1) l/b,& = s,,, . ( 17) 

--n(n+ I)(1 -& j’z,,, (IX) 

where the spectral coefficients have been eliminated in 
favor of the physical variables by means of an inverse 
transform so that the computations can be carried out 
in the physical space. Note that we have truncated the 
series in (16a, b) at NT for the inner summation and 
NL for the outer summation and have used (?:i’, 
to represent the (NT+ 1) x (NT+ 1) /th Chebyshev 
derivative matrix. Because closed form expressions fur 
the entries of the Chebyshev derivative matrix have 
been given elsewhere [lo], they are omitted here. 

Equations (17) and (18) constitute a system of 
algebraic differential equations that can be solved by 
numerous techniques. Of particular interest in this 
work is the combined Adams-Bashforth and the back- 
ward Euler formulas commonly used for integrating 
the convection and diffusion terms of equation (18)) 
respectively. Upon applying, one arrives at 

CD ,n+ I ---___ Z,,k 
At(l-&)' 

CD 1 
= 

At(1 -cl)’ 
z:++ 

2(l_-ii 
;; [3N;; - H:;- ’ 1. 

(I’)) 

where the superscript ITS denotes the time level and At 
is the time increment. Despite the Adams-Bashforth 
scheme being second-order accurate in time, the over- 
all accuracy of equation (19) is first order. Owing 
to the explicit treatment of the convection term, the 
momentum-energy couplings become one-way and 
can be completely removed by first solving the tem- 
perature field, then the velocity field. 

The short-hand notations, S,,, and H,,, employed 
to abbreviate the convection terms in the above equa- 
tions may be given explicitly by 
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(20) 

(21) 

with the coefficients a;, w>, ,J.;, and y; given by 

a?, = 2n3-1 l 
‘I 2 s 

P,P, P; PA d/.% (22a) 
-1 

2n+l 1 &)“_ =- 0 2 f 
Pf Pi P, P; d/r, (22b) 

-1 

2n+l ’ 
n$ =2 s 

P, Pi Pn W, (224 
-1 

(2nfI) ’ 

6 = y(j+ 1) s 
Pi’ P,’ P,, dp, (22d) __I 

which can efficiently be evaluated by means of a Gaus- 
sian quadrature formula. Alternatively, these integrals 
can be expressed in terms of ‘3-J’ symbols as normally 
done in mathematical literature and details to 
compute them can be found in the monograph by 
Rottenberg et al. fl 11. 

4. PHYSICAL QUANTITIES 

One of the important parameters in heat transfer 
analysis is the normalized surface heat flux q com- 
puted from the following expression : 

az 
4(4P) = -2 Yj-f e=_l ( > 

‘vi. NT 

= -2 c c ~~~,Z~~(t)~~(~). (23) 
n=o k’=o 

Traditionally, this quantity is reported in the form 
of the mean Nusselt number which, by definition, is 
obtained by averaging the local heat flux over the 
entire surface area of the sphere. Upon performing 
the necessary operations and making use of the 
orthogonal property of the Legendre function, the 
mean Nusselt number based on the sphere diameter 
becomes 

A%(t) = -4 “c’ @&Z,,(t) (24) 
k’ = 0 

in that ail terms drop out except the zeroth term. In the 
case of the specified surface heat flux, the appropriate 

Table 1. Summary of simulation parameters. 

Parameter 

NL 
NT 
cp 
At 

Value 

12 
100 
1.43 
1o-3 

quantity of interest is the surface temperature which 
can be calculated from 

(25) 

In subsequent discussion, the heat transfer process 
will be examined in greater detail, and the quantities 
derived in this section will be used to assist in inter- 
preting the simulation results. 

5. RESULTS AND DISUNION 

Before going into the main focus of this section, we 
summarize the simulation parameters. In Table 1, the 
truncation parameters were chosen on the basis of our 
past experience gained in a similar study [12] where 
convergence has been confirmed. Thus, those values 
were again adopted for the range of the Peclet number 
and the buoyancy parameter investigated in the present 
study without reexamining the matter. For the purpose 
of illustrating the physical insight, the remaining dis- 
cussion will be organized into two separate sub-sections. 
Each is devoted to a specific type of surface boundary 
con~tion described in the Fo~ulation and is accom- 
panied by a parametric study with Pe and 3 varying. 

5. I. Nonuniform surface temperature 
We now look into the temporal development of the 

flow and temperature fields as we keep Pe at 10 while 
B is altered to represent pure forced convection 
(B = 0), and combined convection with gravity acting 
in either the same or opposite direction as the free 
stream velocity (5 = - 10, 10). Also, the surface tem- 
perature in these three cases is taken to be uniform 
with a, = 1. Unless otherwise indicated, the heat 
capacity ratio @ is assumed to have a value of 1.43. 
Figures 2-4 illustrate how the velocity and tem- 
perature fields evolve in time as depicted at three 
different instances to show the early, intermediate, 
and late periods. For B = 0 (Fig. 2) the velocity field is 
invariant with respect to time whereas the temperature 
field evolves in a similar fashion as that encountered in 
a non-porous medium with the same physical setting. 
That is, the early stage of its development is controlled 
by the conductive mechanism whose dominant role 
diminishes in favor of the convection as time 
progresses, thereby leading to asymmetric tem- 
perature contours. In Fig. 3, buoyancy is allowed to 
take place and act in the direction of the free stream 
velocity. Here, it is easy to notice a drastic change 
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b 

Fro. 2. Streamlines and isotherms for Pe = 10, B = 0. 
(a) I = 0.2. (b) I i= I, (c) I = 8.6. 

of the streamline levels implying a considerable flow 
enhancement of the fluid particles in the vicinity of 
the sphere. Such a behavior is attributed to the aid of 
the motion generated by density difference. In 
addition to that, the flow pattern appears to be some- 
what deflected downstream. Due to the aid of the 
buoyancy-generated motion, the isotherms are further 

FIG. 3 Streamlines and isotherms for Pe = 10, B = IO. 
(a) f = 0.1, (b) f =i 0.5. (cf I = 1.8. 

elongated in the streamwise direction when the tem- 
perature contours in Figs. 2 and 3 are compared. 
Figure 4 illustrates the velocity and temp~ratnre dis- 
tributions under the same circumstance as in Fig. 3 
except for the direction of gravity which is now in the 
reversed direction. In this case, the buoyancy force 
produces a flow current against the free stream, thus 
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FIG. 4. Streamlines and isotherms for Pe = 10, B = - 10. 
(a) t = 0.2, (b) c = 2, (c) t = 12.2. 

causing a significant change in the flow structure. It is 
the existence of the circulation zones on the upper and 
lower surface of the sphere that modifies the flow 
and they are triggered at a very early time and keep 
growing thereafter until the time-invariant state is 
fully established. As a first attempt to verify the results 
presented thus far, the flow and temperature fields 

1789 

a 

b 

Fro. 5. Streamlines and isotherms for Pe = 2, B = 50. 
(a) t = 0.1, (b) f = 0.5, (c) t = 1.8. 

given in Fig. 5 for the case of pure natural convection 
with B = 50 are now compared with the existing solu- 
tion. Even though the flow develops in a different 
fashion, the temperature is quite similar to those in 
Figs. 2 and 3 as one would expect. At steady-state 
(t = 1.8), the predicted streamlines agree qualitatively 
well with Pop and Ingham [4]. 
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FIG. 6. ERects of surface temperature nonuniformity on local heat flux for Pe = 10 with ia) B = 0. 
(b)B= lO,(c)B= -10. 

To examine the role of surface temperature non- 
uniformity on the heat transfer rate, Fig. 6 shows the 
local heat flux along the sphere periphery for three 
cases corresponding to those presented in Figs. 2- 
4 using three different surface temperature profiles. 
Clearly, the local heat flux is sensitive to the surface 
temperature which is not surprising because of their 
direct relationship. Thus, any perturbation in the sur- 
face temperature is also reflected in the local heat flux 
regardless of the type of convection involved. One 
interesting point is that with buoyancy opposing the 
external motion, heat transfer is less intense in the 
frontal surface than in the rear, which is in contrast to 
the former cases. Also worthwhile to remark is the 
overall heat transfer rate which does not seem to be 
influenced much for all the surface temperature pro- 
files examined, as indicated by small deviations among 
the areas under those curves. In an effort to assess the 
overall performance of the heat transfer process. the 
instantaneous mean Nusselt number is plotted as a 
function of time in Fig. 7. For Pe = 10 and 30 (Figs. 
7(a) and (b), respectively), there is a clear distinction 
about the effects of the buoyancy force direction. 
However, as Pe increases, this trend is lost since both 

directions tend to intensify the heat transfer rate as 
demonstrated in Fig. 7(c) for Pe = 100. 

It is appropriate at this point to quantitatively vali- 
date the results reported above. Though a direct com- 
parison is not possible, there exists a few limiting 
conditions under which numerical and/or approxi- 
mate analytical solutions are available 141. For forced 
convection, B = 0, boundary layer theory predicted 
the averaged Nusselt number to be 

Nu = 1.128&e), 

which is used to compare against our results sum- 
marized in Table 2. At a first glance, significant dis- 
crepancies, up to 50%, appear to occur at low Peclet 
number as one would anticipate but the agreement is 
seen to improve steadily as the Peclet number 
increases. This finding is expected because boundary- 
layer approximations are known to be valid only a~ 
high Peclet numbers. One apparent fault of the above 
Nusselt expression is its failure to approach the con- 
duction limit of 2 as Pe goes to zero. Nevertheless, it 
is a useful correlation for checking the asymptotic 
behaviors of the numerical solution. For natural con- 
vection, one can easily show that the present for- 



Mixed convection from a sphere in water-saturated porous media 1791 

0-t , 1 . . , , . . 

0 3 6 9 

Dimensionless Time 

15s 

a 
- jyB.10 
.._..-.... _ 0 

_____ -10 

-----.--_-.__-.____.~~ 

3- 

7 

0 2 4 6 

Dimensionless Time 

o- 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

C 

5 

Dimensionless Time 

FIG. 7. Time variations of mean Nusselt number with (a) Pe = 10, (b) Pe = 30, (c) Pe = 100. 

Table 2. Comparison of steady-state Nusselt Table 3. Comparison of steady-state Nusselt numbers in 
numbers in forced convection (B = 0) natural convection (U, = 0)t 

Pe Present Boundary layer [3] 

1 2.441 1.128 
10 4.570 3.567 
50 8.889 7.976 

100 12.174 11.280 
150 14.703 13.813 
200 16.835 15.952 

PeS Present Ref. [4] Ref. [3] 

10 4.1398 5.6966 3.2378 
20 5.5304 6.5468 4.5790 
40 7.4856 7.8482 6.4757 
70 9.8008 10.0060 8.5665 

100 11.534 11.7022 10.2389 
150 13.896 14.0680 12.5400 
200 15.872 16.4908 14.4800 

mulation reduces to that of natural convection in the 
limit as the free stream velocity approaches zero. In 
fact, by reassigning the dimensionless quantities 
(Pe/2 -+ Ra, @ -+ 1, and B + l), our governing equa- 
tions are identical to those of Pop and Ingham [4] 
who obtained the solutions using a finite differencing 
scheme. Thus, it is desirable to check our simulation 
results under those conditions. Table 3 displays a com- 
parison of our data along with the predictions by Pop 
and Ingham [4] and by boundary layer theory [3]. 
Once again, one immediately notices substantial dis- 
crepancies, ranging from 10% for Ra on the order of 
a few hundreds to as high as 80% for Ra - 1, between 

tBased on linear density-temperature relationship. 
$Pe here is equivalent to 2Ra as defined in Pop and 

Ingham [4]. 

the numerical results and the boundary layer solu- 
tions. Although the disagreement between ours and 
those of Pop and Ingham [4] is somewhat less serious, 
it raises a concern because of the unexpectedly large 
deviations. More importantly, it does not give any 
indication whether or not the present results are 
correct. As an attempt to provide more confidence, 
Table 4 compares the Nusselt numbers for the case 
of creeping flow past a sphere with 4 = 1. Excellent 

b 
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Table 4. Comparison of steady-state 
Nusselt numbers for creeping flow past 

a solid sphere with (1, = I 

PP Present Ref. [I31 

0 2.000 2.0000 
I 2.339 2.2599 

10 3.264 3.2240 
50 4.697 4.7084 

IQ0 5.630 5.6570 
200 6.810 6.8578 

agreements are obvious as revealed by values which 
generally differ no more than 4%. It should be pointed 
out that the data used in the comparison were com- 
puted from a correlation which has been known to be 
accurate to within 2% error ]13]. 

Much of the discussion in the preceeding sub- 
section is speculated to be true for nonuniform heating. 
To substantiate this claim, we shall again simulate one 
of the scenarios used previously. In particular, we 
choose the physical system with Fe = 10 and 
B = - 10 because of its merit of providing good physi- 
cal insight. With the uniform surface heat flux 
(a0 = I), recirculation zones are delayed to a later time 
and the size of the recirculation zone is much smaller 
(see Fig. 8). Moreover, they tend to be confined in the 
aft portion of the sphere surface rather than expand- 
ing throughout the entire surface area in a nearly 
symmetrical manner as in the previous case. Since the 
recirculation zone is relatively small, the temperature 
field is expected to be minimally affected. Indeed, it 
is very much the same as for the thermally assisted 
convection case. In order to quantify the effects due 
to nonuniform heating, Fig. 9 shows the surface tem- 
perature at f = IO for three different heat flux profiles : 
U(, = 1. a, = I and u, = 0.1, and uU = 1 and 
u, = a, = 0.1. It is quite striking that all three surface 
temperature curves behave in a similar fashion with- 
out an inflection point. 

6. CONCLUDING REMARKS 

Heat transfer associated with a sphere embedded in 
water-saturated porous media and in the presence of 
forced and natural convection with effects of density 
inversion is investigated for the cases of variable sur- 
face temperature and heat flux. The following con- 
clusions are drawn. 

1. For systems with the gravity pointing in the 
opposite direction to the free stream velocity, the flow 
in the region near the sphere surface is signifi- 
cantly enhanced by the buoyancy force. 

2. When the gravity and the free stream velocity are 
in the same directions, recirculation zones appear due 
to counter current flows of the external and the ther- 
mally generated motions. 

3. The surface heat flux is sensitive to the surface 

FIG. 8. Streamlines and isotherms for Pe = 10, 3 = -- 10. 
(a) t = 0.5, (b) t = 2, (c) t = IO. 

temperature and appears to control the heat flux dis- 
tribution, but the overall heat transfer rate does not 
seem to be effected substantially. 

4. The non-uniformity in surface heat flux does 
not alter the shape of the surface temperature profile 
significantly due to the insensitiveness of the flow 
under this circumstance. 
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FIG. 9. Surface temperature at t = 10. 
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